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The nearest-neighbor resonating-valence bond (NNRVB) state is studied using 
classical anticommuting (Grassmann) variables. The classical partition function 
corresponding to the self-overlap of the NNRVB wavefunction is generated 
from a local (bond) Hamiltonian expressed in terms of four anticommuting 
variables. It is shown that the one-particle-per-site constraint introduces an 
interaction term which is a local product of all four variables. Two approaches 
are applied to study this Hamiltonian: (i) a self-consistent field decoupling 
scheme and (ii) a systematic perturbation expansion around the unconstrained 
soluble point. Bounds on the norm of the wavefunction are derived. Extensions 
to the presence of holes, long-range valence bonds, and the introduction of 
phase fluctuations [which violate the Marshall sign rule and yield a U(1) gauge 
theory] are discussed. 

KEY WORDS: Grassmann Variable; Hubbard model; Heisenberg anti- 
ferromagnet (AF); resonating valence bond (RVB) state. 

1. I N T R O D U C T I O N  

The desire to uncover the mechanism behind the high-T,, superconductors 
has renewed interest in two long-standing problems--namely the two- 
dimensional (2D) Hubbard model and the 2D Heisenberg antiferromagnet 
(AF). In different limits, the Hubbard model can describe both non- 
magnetic metals and AF insulators. Its Hamiltonian is given by 

I-I.obbard = -- ~ Z to(ci; Cj~ + Cj; Ci~) + Y~ Un~ ni+ 
( i j )  a i 

(1) 
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+ where c,~ (c~o) creates (annihilates) an electron of spin ~r at site i, t~j is 
the tunneling matrix element, and U is the on-site Coulomb repulsion 
energy. It is widely believed that the Hubbard model (near half-filling and 
with moderately large U) captures the essential features of these super- 
conducting materials. (1 6~ In turn, the corresponding undoped Mott 
insulators (such as La2CuO4) would be describable by the large-U, half- 
filled Hubbard model. In this limit second-order perturbation theory yields 
a Hamiltonian which behaves effectively as a Heisenberg AF: 

HHeisenberg = -- J 2 Si" Sj (2) 
( i j)  

where J ~ - - 4 t Z / u  and t o is nonzero only when i and j are nearest 
neighbors. Allowing small nonzero next-nearest-neighbor values of t U 
would lead to a frustrated Heisenberg AF. This problem has also received 
much attention lately. (1'6~ 

Compared to its classical counterpart, a quantum spin system is com- 
plicated not only by quantum fluctuations, but also by symmetry con- 
siderations. Quantum fluctuations play a major role in the problem at 
hand because both the spin and the dimension are low. Furthermore, 
'whereas the symmetry properties of the ferromagnet's ground state are 
simple, those of the AFs ground state are highly nontrivial. A standard 
approach to the Heisenberg AF involves spin-wave theory, which includes, 
e.g., the Holstein-Primakoff transformation (7) and its expansion in terms of 
AF (or N6el) magnons. (8'9~ The approximation is justifiable for large values 
of the spin and in higher dimensions; however, the problem at hand 
involves spin 1/2 and is only 2D. Moreover, alternative methods such as 
the path integral technique seem to indicate topological differences between 
integral and nonintegral spin (at least in 1D)(l~ distinction not brought 
out by the usual spin wave expansions. Consequently, alternate possibilities 
warrant attention. 

One choice is the resonating-valence bond (RVB) state. Anderson 
proposed the RVB state first in the context of frustrated Heisenberg AFs (~1) 
such as that on a triangular lattice and later conjectured its role in high-T~. 
superconductivity. (~) Bethe's exact solution in one dimension (12) and 
Hulth6n's cluster approach (13) motivated Anderson to construct a liquidlike 
state comprised of spins paired into singlets with the system resonating 
between all the possible configurations. The coherent resonances can lead 
to long-range order AF in some versions of the RVB state. (14-16) A small 
frustrating term, whether it be due to next-nearest-neighbor tunneling 
matrix elements or to the introduction of holes, may tend to benefit the 
RVB state over a N6el-like state. 

The main problem the RVB state presents is calculational difficulty. 
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This is largely due to the fact that states corresponding to different con- 
figurations are not orthogonal. Various versions of and approaches to the 
RVB have been pursued. Some works have studied mean-field BCS-like 
approaches.(2 s~ These may exhibit the possible order parameters and the 
conditions for their condensation; however, they involve the strong "real- 
space" constraint which allows only one particle per site. The Gutzwiller 
projection operation (or alternative methods such as the slaved bosons 
approach) leads to new complications not present in weak-coupling 
theories such as BCS. Others have chosen to consider real-space dimer- 
like approaches./17 19~ The real-space approaches avoid the difficulty of 
inserting the constraint by taking it into account from the outset. In view 
of the short-ranged pairing in copper oxides, this approach seems worthy 
of further exploration. 

Among the real-space approaches, we concentrate on the one intro- 
duced by Sutherland/17) In this version only nearest-neighbor spins are 
paired into singlets (NNRVB). In order to construct the NNRVB state, 
first consider a dimer covering (called a) of a bipartite lattice. Each dimer 
connects two nearest neighbor sites--one on each sublattice. The spins 
associated with each dimer form a singlet state: 

q~(i, j )  = I~,+j)  -- [,~i'~i) (3) 

where the first site (i) is on sublattice A and the second (j) is on sublattice 
B. Maintaining this convention is important for producing a state that will 
obey the Marshall sign "rule. ''(2~ Next, let the "singlet pair state" [a) be 
defined as the product of all such singlet states on a given dimer covering 
(a): 

[ a ) =  I~ ( } ( i , j )  (4) 
( U ) E ~  

Finally, the NNRVB wavefunction is the (coherent) linear superposition of 
these wavefunctions associated with all possible dimer configurations: 

[ q / ) = 2  la) (5) 
ct 

Though easily constructed, the NNRVB state remains difficult to 
utilize in calculations. Since each singlet pair state [a) contains the two AF 
states, different singlet pair states la) and Ib) are not orthogonal. In fact, 
la) and Ib) will in general have even more states in common. However, 
as suggested by Sutherland, (17) many of the properties of the RVB 
wavefunction may be deduced from its self-overlap: 

( O l 0 )  = ~ ( a l b )  (6) 
{~.b} 

822/59/1-2-22 
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which may be expressed as the partition function of a classical model 

( ~ [ ~ )  =Z(2, 4)= ~ 2P24 p (7a) 
{c} 

The sum includes all close-packed coverings of the lattice by double dimers 
(or degenerate loops) and loops; P2 indicates the number of double dimers 
and p the number of loops. A factor of two is associated with each double 
dimer and a factor of four with each loop. Note that the very definition of 
NNRVB used above and the map to Z(2, 4) necessitate that the underlying 
lattice be bipartite. Our approach cannot be applied to frustrated versions 
of the problem; in general, it requires that the Marshall sign rule hold. 
It is convenient to consider Z(2, 4) as a special case of the more general 
partition function Z(x, y)(2~,22) 

Z(x, y)= ~ xP2y p (7b) 
{c} 

Some works have pursued a study of the SU(n) generalization of the 
Heisenberg AF in the large-n limit. (3'16'23~ As n increases, the amount of 
quantum fluctuation decreases. This is reflected in the fact that up to order 
l/n, the singlet pair states la)  and [b) are orthogonal. The corresponding 
NNRVB self-overlap in the SU(n) AF is Z(n, 2n) [-or written in terms of 
the spin s it is Z(2s + 1, 4s + 2)]. As n increases, configurations with even 
the smallest of loops decrease in importance and the dimer configurations 
dominate the partition function. Therefore, to the first order in l/n, one 
must only consider dimer configurations and configurations containing a 
single loop the size of a plaquette. In this limit, the NNRVB state becomes 
more "spin-Peierls"-like and less N6el-like. (23'24~ 

In a recent work, Shapir and Kohmoto (19~ derived a classical 
Hamiltonian which generates the required dimer-loop configurations. The 
associated field theory, an 0(4) model in a logarithmic potential, was 
found from a Hamiltonian comprised of local (bond) contributions. They 
employed commuting variables on which special trace rules had to be 
imposed in order to satisfy the hard-core constraints. A mean-field estimate 
for Z(2, 4) was found. In addition, they related the AF correlations to the 
energy-energy correlations of the classical model and showed them to be 
short-ranged in 2D if only nearest neighbor singlets were allowed. (The 
interesting question that remains is: What is the behavior of the dimer- 
dimer correlations?) The local triplet excitations were analyzed by the 
Feynman-Bijl approach and were shown to have a finite energy gap. 

There are certain advantages to having an anticommuting real-space 
representation in addition to this commuting one. For example, the usual 
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fermionic constraint preventing multiple occupation of a site by identical 
particles is automatically included in the anticommuting formulation, and 
a one-particle-per-site constraint is easily imposed. Moreover, the fermionic 
nature is likely to influence the statistics of the excitations once the system 
is diluted away from half-filling. Also, the connection between real-space 
and momentum-space approaches is more apparent in this representation. 
As in many other 2D models, the bosonic and the fermionic pictures, 
though equally applicable, complement each other by illuminating different 
aspects of the whole picture. 

The description of Z(2, 4) in terms of either commuting or anticom- 
muting classical variables is similar to the case of 1D quantum spin systems 
with nearest neighbor interactions, which can be formulated in terms of 
either hard-core bosonic operators or (spinless) fermionic operators. In 
fact, in that case one representation can be directly transformed into the 
other via the Jordan Wigner transformation. (25'26) When the Jordan- 
Wigner transformation is applied to the 2D quantum spin system, it 
produces nonlocal effects. It can lead to couplings with phase factors which 
depend on a summation of number operators (along a "string"). However, 
the large-U and half-filled limits may place enough restriction on the 
number operators to trivialize the phase factor and consequently allow 
both fermionic and bosonic representations. But as one moves away from 
these limits, the simple correspondence between the treatments would be 
lost. Recently, Fradkin introduced a generalized (multivalued) Jordan- 
Wigner transformation (27) to investigate a mapping between a 2D lattice 
gauge field theory with a Chern-Simons term and the 2D spin-l/2 X Y  

model. 
In Section 2 we introduce a systematic Grassmannian representation 

to the self-overlap of the NNRVB state (which was briefly outlined 
elsewhere(28)). A real-space expansion technique shows that it produces the 
correct configurations with the appropriate weights and signs. In Section 3, 
we offer two schemes for approximating the self-overlap. The first is a self- 
consistent decoupling scheme and the second a perturbative expansion (in 
momentum space). We also provide upper and lower bounds on the self- 
overlap. In Section 4, we discuss the U(1) gauge theory obtained when 
phase fluctuations are allowed. In addition, we examine the introduction of 
holes and their statistics. In Section 5, we recapitulate our results, compare 
them with the results of others, and outline our future plans regarding this 
representation. A systematic approach to calculating Z(2, 4) on strips of 
finite widths is presented in the Appendix. 
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2. T H E  G R A S S M A N N I A N  R E P R E S E N T A T I O N  

To represent the two spin states of each particle we introduce two 
pairs of Grassmann variables: r/*, qi and r 4+, which all anticommute 
with one another. The product ~/~*~/i (or {*{~) will indicate the presence of 
an electron with one (or the other) definite spin state. Note, however, that 
they do not represent spin up (or down), but rather the two possible AF 
ground states. In other words, r/*r/i represents spin up on one sublattice 
and spin down on the other one and vice versa for 4"{~. 

To implement the constraint of one particle per site of the large-U 
Hubbard system at half-filling, we modify the definition of the Grassman- 
nian integration 3 to include a "Gutzwiller projector." For any function 
f01*, ~/, {*, 4) we define 

f Dgf(q*, tl, 4", 4) = f l~ [dtl* dqg d~* d4, (t//t/* + {j4*)] f(~/*, t/, {*, 4) 
Y 

(8) 

Two particles on the site j would be represented by ~/*~b~*~.a arising from 
f ;  while no particles (a hole) would be represented by 1. However, both of 
these possibilities are eliminated by the projector ,/*~/j + {*4j in the integra- 
tion measure. 

Using this measure, the self-overlap (~p[tp) becomes 

( tp[O) = Z(2, 4) = f Dg exp[H(r/*, q, 4", ~)] (9) 

where 

J 

+i~+++++i+*oL++ {~-+~}) (lOa) 

The factor of i associated with the vertical bonds makes this formula- 
tion closely related to the s +id phase introduced by Kotliar. (4) Other 
expressions for H(~/*, ~/, 4", ~) lead to the same classical partition function; 
for example, 

/-/(~*, ~, ~*, ~) = Z (C~++ e~ + +"2+ e~ 
J 
+(  +x �9 (-1V* - 1 )  + ++e~+ ~j.*+e,+ {~ + ~}) (lOb) 

3 See ref. 29 for definitions and applications to other models in statistical mechanics. 
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and 
H(~*, q, ~*, ~)=  ~ (e~/4~/*q*+ ~ ~,,4 - e  rliqj+e" 

J 

-e-'~/4tl*tlLey+e'~/4tljrlj+ey+ {,-~ 4}) (10c) 

But note that none of these Hamiltonians is symmetric under rotation by 
~/2. Expressions (10a) and (10c) have the advantage that the couplings 
do not depend on position; while (FOb) has all terms of the same form 
(including the projector). As with the commuting representation, there 
is a symmetry between q's and q*'s (likewise ~'s and ~*'s) as well as 
one between the pairs (~/*, r/) and (~*, ~). These lead to the previously 
mentioned 0(4) symmetry. 

The Grassmann representation of the NNRVB self-overlap is easily 
extendible to the SU(n) generalization of the Heisenberg AF. Instead of 
two pairs of Grassmann variables, one would introduce n pairs. 

In the (real-space) diagrammatic expansion of the partition function 
adapted from that of Samuel, (3~ each pair of Grassmann variables is 
represented by an arrow pointing from the site of the first to that of the 
second. In addition, one finds attached to the ends of each arrow an x or 
an o corresponding to whether the variable represented is starred or 
unstarred. For example, 

~/*t b corresponds to x ---, o 

Consequently, in the above Hamiltonian (10a), horizontal bonds always 
point in the positive x direction and attach x's to o's or o's to x's; while ver- 
tical bonds always point in the positive y direction and attach x's to x's or 
o's to o's. At each site two and only two bonds (one labeled o, the other 
x) must arise from the expansion. Thus, the only contributing configura- 
tions are close-packed arrangements of loops and (double) dimers. There 
are four possibilities (t/i~/*, t/*tb, ~i~*, or ~*~j) for each bond in a loop; 
however, once one bond is selected, the remaining bonds in the loop are 
determined uniquely--hence the desired weight of four for loops. A similar 
argument yields two for (double) dimers. 

Finding the sign associated with each diagram requires a little more 
thought. Consider the simple example of a square (see Fig. 1). One of the 
terms arising from the expansion is 

h = f Dg[q*Mb ] [-(i) q*~/~'] [~7~/c] [( i )qJq.]  ( l l a )  

Note that with every vertical bond comes an i; hence, a factor of (i) v arises, 
where V is the number of vertical bonds (V is always even). Next, consider 
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0 X ~ P-O X 
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T 
X 

0 

Fig .  1. 

the diagram to be traversed in the clockwise direction. To facilitate the 
integration, switch all pairs not appearing in order traversed (except that 
corresponding td the first and the last terms in the expansion). Such a step 
requires exchanging only "bond" pairs and not "site" pairs. This operation 
introduces a term (-1)A,  where A is the number of bonds passed over 
against their assigned direction. Then note that the first and last terms in 
the expansion do not appear in the order traversed. Switching these brings 
in an additional ( - 1 ) ;  this is the universal ( - 1 )  arising from fermion 
loops. Finally, the unstarred variable (at each site) should appear first. 
Making the appropriate exchanges here results in a factor of ( - 1 )  x~ 
where X O  is the number of times one encounters " X O "  (as opposed to 
"O Jr") while progressing around the loop, 

t" 

h = (  I~V/Z+A+XO+I L ~ * * * * --  q~ l~  tlbrlb rlctlc rlarla 

= (__ 1)V/2+A+XO+ l ( l lb )  

In the case of the square in Fig. 1, V/2  is one, A is two, X O  is two, and 
the overall sign is positive. 

Next one can adopt an inductive method to show that any loop 
enclosing an even (odd) number of sites carries a positive (negative) 
weight. Consider a diagram containing the bond shown in Fig. 2a and con- 
sider changing it to the bonds in Fig. 2b. Such a replacement alters A by 
one, V/2  by one, and X O  by two or zero, depending on the direction of 
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0 

X ~ 0 X 

(a) (b) 
Fig. 2. 

0 

traversal, but the overall sign of the diagram remains unaltered. Further- 
more, the number of sites within the loop would remain the same or differ 
by two. Applying this result to the square, one finds that a rectangle of 
dimension two-by-one also has a positive weight, and so forth. 

On the other hand, consider substituting the bonds in Fig. 3a with 
those in Fig. 3b. This step requires changing XO by one and hence flips the 
overall sign. In addition, it modifies the number of sites within the loop by 
one. Calculating a few simple diagrams such as the square and the double 
dimers and then tabulating the effect of extensions should convince one of 
the above-mentioned sign rule. In a close-packed gas of loops and double 

0 X 
0 ~ 0 

0 L 

v 

X 0 
(a) 

Fig. 3. 
(b) 

0 
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dimers on a square lattice, no loop can enclose an odd number of sites, and 
so this sign rule presents no problem. However, eventually, we would like 
to consider the effect of holes and then this result becomes important. 

3. A P P R O X I M A T I N G  THE SELF-OVERLAP (~l~) 

It is desirable to attempt to compute Z(2, 4). First, the constraint 
(Gutzwiller projector) should be recast as an exponential, for instance, as 

H (r/*r/j + ~*~j)= zlimo~ exp f ~  [z(~/*~/j + ~*~j) - -zZt l* t l s~*~j  - l n z ] l  
J k j  ) 

(12) 

Now the constraint can be made part of the Hamiltonian. Without the 
quartic (interactive) term, the integration would decouple into separate 
integrations, one over the ~'s and one over the r/'s, and both could be 
explicitly performed. Each integration would correspond to configurations 
of dimers, loops, and holes (with weights of z). Then, as z approaches 
infinity, holes would dominate all the configurations. The quartic term 
prevents this catastrophe, but in the process complicates the problem by 
coupling the integrations. Thus, we must find a way of dealing with these 
complexities. Most of the methods for treating an interactive (fermionic) 
field theory have a Grassmann variable version) 3~/ First, we will apply a 
decoupling scheme to the quartic term. Then we discuss a (momentum 
space) expansion in the quartic term. 

3.1. A Decoupl ing Scheme for the Se l f -Over lap  

Consider the decoupling scheme in which the term r/*t/i~*~ i is 
replaced by ~/*r/j (~*r  Such a scheme breaks the t / ~  ~ symmetry. Let us 
examine the problem on an L x L  lattice with L even; N ( = L  2) is the 
number of lattice sites. When periodic boundary conditions are applied, the 
system is translationally invariant; that is, (~*~j)  is independent of j, and 
the operators are easily Fourier transformed. We have 

rlj = L 1 ~ eik.Jak and ~j : L i ~ eik.ib~ 
k k 

where k = L -  ~ ( 2 ~ s ~  + 2~t~y), and 

- ( L - l )  L - 1  
<~ s, t < ~ - -  

2 2 

(13) 



Nearest-Neighbor Resonating-Valence Bond State 343 

The self-overlap (ip liP)dec is then given by 

lira z "~ I]  I~da*kda-kda~dak (iP [ Ip)dec = 
Z ~  k>0 k o 

x exp [(2i sin kx + z - z 2 ( ~ ' 4 )  ) a*ax 

+ ( - - 2 i s i n k x + z - - z 2 ( ~ * r  a k 

a 'a*  q]" + 2 s i n k y a k a  ~ - 2 s i n k .  ~ -k Jr  

n 
w 

db*~ db_k db* dbk 
k>0 

x exp[(2i sin k~ + z)b~bk + ( - 2 i  sin kx + z )b*~b_k  

b 'b*  n~ +2s ink ) .b~b  ~ - 2 s i n k y  k -kJj ~ (14) 

which leads to 

(iPliP>dec:----" l imz  N i l  ~ E f(Z--Z2ff~=tr  2 
z~ s>0 t>0 

+4 sin- ~--~) + 4 sin 2 

�9 2 [2rcs\ 
x {s>I~Io ,>l]0 Iz2 + 4 sm ~--~-) + 4 sin2 (~ - f ) ]  } z (15, 

The self-consistency relation follows: 

(~*r = N -I  2 (~-*~J) = N - '  2 ( b ' b , )  
j k 

= N 1 ~ ~ z 2 + 4 sin2(27rs/L) + 4 sin2(27ct/L) s>0 t>0 

In the limit as N approaches infinity, this becomes 

(~*~)dec = ~-7 dkx dk.. [ z2+4s in2 (k~ )+4s in2 (ky ) ] - I  (17) 

An expansion in z -~ yields ( ~ * ~ ) - - - - z - l - - 4 z  -3. Substituting into the 
expression for the self-overlap and taking the limit as z approaches infinity, 
one obtains 

[ 27rs'~ 4 (iPliP)de~={~>lJot>[fIo[4Sin2~---/f-)+ s in2(~-~)]} ;=Z(1 ,2)  (18) 
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In this decoupling scheme (OlO)aer equals Z(1,2). The decoupling 
scheme breaks the t /~  r symmetry and as a result all ~'s come from the 
measure, while all t/'s come from the expanded Hamiltonian (recall that 
(~*~) approaches zero as z approaches infinity). Hence Z(1, 2) need only 
involve one set of the variables and is easily solved. Z(1, 2) can be shown 
to be the square of Zaim,r and the large-N limit was found by Kasteleyn. ~ 
It can be obtained by taking the logarithm and replacing the resulting stuns 
by integrals. We have 

l n [ Z ( 1 , 2 ) ] = N l n 2 + 2  ~ ~, l n l s i n 2 ( ~ f ) + s i n 2 ( ~ f ) ]  (19a) 
s > 0  t > 0  

ln[Z(1, 2)] = N In 2 - -7 ~=  - - n  (19b) 

ln[Z(1, 2)] = N ( - ~ - ) ~  N(0.5831) (19c) 

where G is Catalan's constant, 

1 1 
G =  1 - ~ + 7 ~ +  - ---0.9160 (19d) 

J -  3 -  

3.2. A P e r t u r b a t i v e  Expansion for  the  S e l f - O v e r l a p  

A second method for approximating the self-overlap involves a pertur- 
bative expansion around the soluble (noninteracting) point. If one Fourier 
transforms the system with the t/*t/j~*ffj terms included, the resulting 
expression is 

( 0 1 r  lim z-Uf[Ida~dakdb*dbk 
Z ~ o O  k 

x exp { ~  [(2i sin k:, + z)(a*ak + b*b~) 
; --  i k y l  a * * +,e  tak _k+bkb_k)+ieig'(a*a*k+b~b_,)] 
Z 2 

N~k ~p ~q a'~apb*bk+q P} (20) 

Again, if it were not for the last term, the integration could easily be done. 
An expansion in the last term yields 
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da* dak rib* dbk 
k 

{? xexp [(2isinkx+z)(a~ak+bkbk) 

+ie-ik'(aka_k+bkb_k)+ie'~'(a*a*~+b*b*aJ]} (21) 

where )~ = -zZ/N. Let us adopt the following notation for the expansion 
in 2: 

N 

( ~ b [ 0 ) =  E 2nPn (22) 
n = 0  

Po has all of its factors arising from the bilinear (flee) part of the 
Hamiltonian and is easily calculated. Performing the integrations yields 

Po=z-U Q~<o ~<o[Z2 +4sin2(2~--~-s)+4sin2(~)]}4 (23) 

Taking the logarithm of the above expression and replacing the resulting 
summations (in the large-N limit) with integrals provides 

l n [ P o ] = - N l n z +  N fo fo ~5 dkx a/kj, ln(z 2 + 4 sin 2 k x + 4 sin 2 ky) (24) 

Expanding the logarithm and integrating gives 

ln[Po] = N  ln(z2 + 4 ) - I n  z - 2  2n(z2 + 4)2n (25) 
n = l  

The third term above can be reexpressed as 

I (2n ~2 2 s 4/(z2+4) F(k, 7(,/2)- 7c/2 
= - dk (26) n = 1 2n( z2 + 4) 2n \ n / g o k 

where F(k, ~/2) is a complete elliptic integral of the first kind. 
* * contribution from the The constituents of P1 have the a k a p b q b k +  q p 

expanded quartic portion, while all the rest arises from the free part of the 
Hamiltonian. The integral is nonzero only when p=k. After some 
manipulation one arrives at 

PI = s o, z 2 + 4  sin2(2~s/L) +4 sin2(2~rt/L) Po (27a) 
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I P I =  ~ (z 2 + 4 )  2. Po 
n ~ O  

P1 = zU~4rc-F z2~_4, Po 

(27b) 

(27c) 

they contain The constituents of P2 are more complicated; 
a*apa*asb*bk+q pb*br+t_~.. The a~' may be paired (contracted) with ap 
(if k =p) ,  as (if k = s), or a* (if k = - r ) ;  the b variables are contracted 
similarly. In addition, because the variables anticommute, k cannot equal 
r, and so forth. Consider the contribution to P2 in which a* is contracted 
with ap, a* with a,,  b* with bk+ q p, and b* with br+,_ ,  (call it p~l)). An 
expression for P(2 ~ follows: 

4z sin2(27zt/L)) 2 

4z z - 16 sinZ(2rcs/L) ]2 
- ~>o ~>o[Z2+4~rcT~)+~s~n2(2rct/L)]Zj Po (28a) 

1 ( 1 V  zN 2 / 4 

2 z 2 + 4 ~  . k=4/(z2+4) 

+ 2 z 2 + 4 rc z2+ 4' Po (28b) 

There are six other contributions p~0, i = 2  ..... 7, to P2 from the 
various "contractions" of the second-order term. These contributions, as 
well as all higher order terms, may conveniently be associated with corre- 
sponding Feynman diagrams and evaluated using Feynman rules. 

Another possible perturbative approach would use the self-consistent 
solution to the decoupled Hamiltonian presented in Section 3.1 as its 
starting point. This procedure will coincide with a 1In expansion. 

3.3. Bounds on the  S e l f - O v e r l a p  

In this section we present upper and lower bounds on ZN(2 ,  4). [Note 
that we have introduced a subscript N in expressions like ZN(2, 4) to 
indicate that the system contains N sites.] First, an upper bound on 
Z N ( 2  , 4) is found in terms of ZN(1  , 2). In a loop-dimer configuration, let l 
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be the total number of sites involved in loops. On a square lattice two 
relations among l, p, P2, and N are easily seen: 

2p2 + l= N (29) 

p ~< l/4 (30) 

Combining these gives the following relation: 

ZN(2,4)= ~ 2P24P~< ~ 2p24#4=2"~'/2 ~_, 1 =2:V/2zN(1, 1) (3ta) 
{c} {c} {c} 

Unfortunately, a numerical expression for Z N ( I  , 1) is not readily available. 
So, we must settle for a weaker bound in terms of ZN(1, 2), 

ZN(2, 4) ~ 2N/2ZN(1, 1) ~ 2N/2z(1, 2) (3lb) 

Z N ( 2  , 4) and ZN(1, 2) both grow exponentially with N; therefore, it is 
convenient to consider this inequality in terms of the "free energy" per site: 

ln[ZN(2,4)]  In2 2G 
- -  -~ 0.9297 (31c) 

N ~ < 2 - +  n 

Next, we set out to find lower bounds. The decoupling scheme 
produced ZN(1,2) as an approximation for ZN(2,4). One is readily 
convinced that ZN(1, 2)~< ZN(2, 4) for each involves a sum over the same 
configurations, with each configuration in ZN(1, 2) having a smaller weight 
than it does in ZN(2, 4). Therefore 

ln EZN(2, 4)] 2(7, 
>~ ~ ~-0.5831 (32) 

N 7r 

Summing a subset of the weighted configurations will also produce a 
lower bound. For instance, among the configurations in Z(2, 4) are the 
close-packed dimer configurations with a factor of two per dimer. Conse- 
quently, 

ZN(2, 4)/> 2N/2Zdimer (33a) 

which implies 

ln[ZN(2, 4)] In 2 G 
~> ~- -+- - - -0 .6381  (33b) 

N rr 

A better lower bound may, however, be extracted from considering 
ZN(2,4) on stripsJ 3~) In the Appendix we show how the weighted 
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enumeration may be done exactly for a 2 x Q strip and approximately for 
a 4 x Q strip. From the latter we may extract a lower bound of 0.7321 
[Eq. (A10)]. The free energy per site is thus bounded by 

ln]-ZN(2 , 
0.7321 ~< 4)] ~< 0.9297 (34) 

N 

4. FURTHER GENERALIZATIONS 

So far we have considered a wavefunction which obeys the Marshall 
sign rule and which is therefore a candidate for the ground state of the half- 
filled system under certain conditions. What would be the excited states 
under the same conditions? One possibility is to consider states which 
are still superpositions of singlets, but with phases that do not satisfy 
the Marshall rule. We show how to incorporate such states into our 
framework. At the end of this section we also mention potential extensions 
to the presence of holes. 

Let us define the pair of variables .1, . 2  (and 41, 42) related to the 
previous ones by the transformation 

1 
, ,  = ~  ( .)  + iv {) (35a) 

1 
"* = 7 ("~ -- i,~) (35b) 

Written in terms of these variables, the Hamiltonian [Eq. (10a)] is 

( 1 1  + 2 2  )_}_ ( 1 2 2  H = E  ~,",+e~ ",",+e,- iE  "*"~+~, --' - . , . , + e y ) + { .  r (36) 
i i 

The Hamiltonian may then be decoupled H = H ( I ) ( ,  1, 41 )+  
H(2)(. 2, 42). Note that H(Z)(p, 2)= [H(1)(p, 2)]* if p and 2 are "real" 
(p*=p ,  2*=2) .  It suggests that exp{H ~ provides the valence bonds 
associated with the ket I~)  and exp{H (2)} those associated with the bra 
(tPl. The two species, however, remain coupled by the constraint, since the 
integration measure also changes: 

dr* d,~ d~* d~,(~*~ + ,*,~) --+ i dr) d,~ d4~ d42 ( , ) ,2  + 4] 42) (37) 

Next, we associate with each dimer, such as the one going from site i 
to the site i+ex, a phase cq(ex). Accordingly, the singlet wavefunction 
becomes 

~)i,i+e v --~ ~)i,i+ev e x p {  ic~i(ev) } (38) 
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Recalling that y/1 ~1 are related to kets and /12 ~2 to bras, we see that the 
Hamiltonian is now given by 

H =  E {q~ r/J+ ~x exp[&,(ex)] + r/~ q~+ ex exp[ - ia,(ex)]  } 
i 

i+  e) 
i 

v 2 exp [&,(ey)] - r/Tr/,+ ~y e x p [ -  icr } + {r/--, ~ } 

(391 

After performing the integration in ZG = Tr(exp H) over the t/'s and 
the {'s, we find for the partition function 

Z6 = ~ 2 p~ [ I  4 cos[~i(ev)- o~i+e,,(e~) + . . . .  o~,_e~(G)] (40) 
{C} loops 

where the configurations { C} consist as before of double dimers and loops. 
The new feature is the cosine of the staggered phase sum along the loops. 

The partition function at finite temperature would require the 
knowledge of the energy difference between the Marshall state (in which all 
phases are equal) and these excited states. We leave that for future 
investigations. We only note that this will yield an effective U(1) gauge 
theory for the free energy similar to that derived by Baskaran and 
Anderson. (34) It is also clear that since the phase difference between all 
pairs of neighboring bonds around the loop may be made arbitrarily small, 
the low-lying excitations are gapless. These are precisely the "resonons" 
discussed by Rokhsar and Kivelson. (24) 

In two dimensions the U(1) gauge system is in its confining phase for 
all finite temperatures. Yet at T = 0  the NNRVB "condenses" into the 
Marshall state. We expect the associated singularities in the ther- 
modynamic functions to be of the type exp(-C/T) ,  typical of a system 
below its lower critical dimension. (Another possibility found in the large-n 
limit (23) and in the quantum dimer model, (24) which also involves only the 
smallest loops, is that phase fluctuations stabilize the "spin-Peierls" state.) 

More general RVB states may consist of singlet pairs between spins 
which are not necessarily nearest neighbors. One class of wavefunctions, 
suggested by Liang, Dougot, and Anderson (LDA), includes only pairs of 
spins belonging to the different sublattices. Their lengths are controlled by 
a variational weight function. Our approach is readily generalized to such 
LDA wavefunctions as well. The explicit diagonalization of the quadratic 
(nonconstrained) Hamiltonian will, however, contain the Fourier trans- 
form of the weight function explicitly and the low-momentum dispersion 
will be determined by its long-range decay. As for exact bounds on the par- 
tition function, they may be derived only for fairly simple weight functions. 
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We conclude this section with a few words on the effect of dilution. 
First, if we consider only static holes (or vacancies), the Marshall rule still 
applies. Read and Chakraborty (35} have shown that a flux of a half quan- 
tum should be associated with each hole in order to satisfy the relation 
between the sign and the area enclosed by the loop. This may be realized 
by changing the signs of all bonds along a string which extends from the 
plaquette adjacent to the hole up to infinity (or to a hole on the opposite 
sublattice, if present). So static holes may be incorporated in the present 
formalism without much difficulty. (is) The real challenge is to allow for 
moving holes. The motion of the holes is another source of frustration. The 
phases on the dimers then must be correlated with the motion of the holes. 
This may lead to generalized flux phases. (6"36'37) Different ways to incor- 
porate these effects into the formalism are currently being investigated. 

5. C O N C L U S I O N  

Let us summarize our achievements in the present work. First, we 
have demonstrated how the overlap of the NNRVB wavefunction may be 
expressed as the trace of a Hamiltonian composed of a sum of bilinear 
(bond) terms of classical anticommuting (Grassmann) variables. As stated 
in the Introduction, this is a very desirable outcome in view of the fact that 
the underlying particles carrying the spins are electrons (namely fermions). 
The constraint of one electron per site was imposed by the redefinition of 
the Grassmannian integration measure. However, the constraint-imposing 
term may also be absorbed in the action as a local "potential." We showed 
that the corresponding vertex consists of one term for every site which is 
a product of the four anticommuting variables. 

In order to deal with such an interaction, we have initiated two 
approaches: one is a systematic perturbation expansion around the con- 
straint-free, quadratic (and hence soluble) theory. The other approach is 
nonperturbative and relies oi) a self-consistent decoupling of the quadratic 
term (h la Hartree-Fock).  

As the next step, we shall address the dimer-dimer correlations in this 
state. It has been conjectured by Sutherland (22) that they exhibit a power- 
law decay. It would be desirable to be able to confirm this prediction and, 
if so, to provide a renormalization scheme to estimate the associated power 
law. The answer to this question is of importance, since this algebraic decay 
of dime~dimer  correlations may turn out to be one of the most important 
characteristics of the "featureless" spin-liquid RVB state. 

We have outlined the first step toward implementing into the for- 
malism phase fluctuations, dilution with static and moving holes, and the 
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parity-violating flux phases. So this approach has the promise to be a 
useful framework for the future study of wavefunctions of strongly inter- 
acting electronic systems. 

APPENDIX  

We will consider here a method for calculating ZN(2 , 4) on a strip and 
then employ these results to find lower bounds o n  Z N ( 2  , 4)  in 2D. Consider 
a P x Q lattice; such a lattice can be divided into P/W strips of dimension 
W x Q. One can derive a lower bound by summing the subset of configura- 
tions in which no bonds connect sites belonging to different strips. We have 

Zp• 4 ) >  [Zw• 4)] P/w (Ala) 

or, written in terms of the "free energy" per site, 

lnEZe • 0(2, 4)] ~> ln~Zw• 0(2, 4)] (Alb) 
PQ Q W  

Consider classifying the configurations contributing to Zw• 0(2, 4) on 
a strip in the following way: Begin at the left of the strip and find the first 
place at which one can draw a vertical line without cutting through any 
bonds. If the line can be drawn between the first and second positions, the 
configuration belongs to the first class; if it falls between the second and 
third positions, the configuration belongs to the second class, and so forth. 
Next notice that the contribution due to the nth class is a product of two 
terms: (1) the weighted configurations belonging to Zw• 4) through 
which no vertical lines can be drawn (call this Cn) and (2) Zv/• 4) 
(it does not matter what happens beyond the nth position). The following 
relation then holds: 

Zw• 0(2, 4) = C1Zwx co- 1)(2, 4) + C2Zw• co- 2)( 2, 4) + .-. -f- CwZo(2, 4) 

(A2) 

If W is even, then Cl equals 2 w/2; if it is odd, then C1 equals zero. 
The case W = 2  is particularly simple3 32) Z2• ) obeys the 

following recursion relation: 

Z2 • 0(2, 4) = 2Z2 • co- 1)(2, 4) + 8Z2 • co - 2)(2, 4) + 4 Z  2 x (Q 3)( 2, 4) 

+ 4 Z 2 •  , 4 ) +  ...  +4Z2xl(2  , 4)+4Zo(2,  4) (A3) 

where Zo(2, 4) = 1 and Z2 • 1(2, 4) = 2. C1 is two--corresponding to a verti- 
cal dimer; C2 is eight--corresponding to a pair of horizontal dimers and a 

822/'59/1-2-23 
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loop (each with a weight of four). All the rest are four because there is only 
one contributing diagram--a loop of length (n - 1). 

Now assume that Z2• 4) can be expressed as fQ and place this 
into the recursion relation. We have 

Q 3 

fQ=2fQ-l+sfQ-2+4fQ-3 ~ f n (A4) 
n = 0  

The sum is a geometric series and easily solved. After eliminating small 
terms, the recursion relation yields 

f 3  _ 3 f 2  _ 6f + 4 = 0 (A5) 

The root of interest is f ~-4.2015. Utilizing the expression in Eq. (Alb), one 
can conclude 

ln[Zp • 0(2, 4)] i> In f _  0.7177 (A6) 
PQ W 

The coefficients in the case of a wider strip are more difficult to obtain. 
However, instead of calculating all of the coefficients, one can calculate the 
first few and write expression (A3) as an inequality: 

Zw•215 1~(2,4)+.- .  +CnZw• n~(2,4) (A7) 

For instance, in the case W equals four, one obtains the following 
relation: 

Z 4  x Q ( 2 ,  4) >~ 4Z 4 • (Q _ 1) -}- 1 8 0 Z  4 x (Q - 2) -~ 9 6 0 Z 4  x (Q - 3) nt- 1 2 1 5 2 Z  4 x (Q - 4) 

(AS) 

One can improve this relation by selecting a conveniently summable 
subset of configurations contributing to the rest of the C,. For instance, 
consider those configurations of length n in which a vertical line would 
pass through either a pair of horizontal dimers separated by a single lattice 
spacing or through a square the size of a plaquette. (A single vertical bond 
will appear on each end.) A typical configuration for n = 6 is shown in 
Fig. 4. For this subset C', equals 8 ~. The relation then becomes 

Z 4  x Q ( 2 ,  4) >~ 4 Z  4 x (Q - 1) + 1 8 0 Z 4  x (Q - 2) -t- 960Z 4 • (Q 3) 

Q 

+12152Za• ~ 8~ZQ n (A9) 
n - - 5  

Expressing Z4 • Q(2, 4) as gQ leads to 

g5 _ 12g4 + 148g3 + 4 8 0 9 2  _ 4472g + 64448 = 0 
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Fig. 4. 

The  re levant  roo t  is g _~ 18.6989, which implies 

l n [ Z p •  In g 
P Q  >~ ~ - -  -~ 0.7321 (A10) 

It would  be s t ra ight forward ,  t hough  very cumbersome,  to pursue  this 
me thod  of be t ter ing  the lower bound.  
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